
1 of 4

Abstract- This paper presents an adaptive, heart-model-based ECG
compression method. After a conventional pre-filtering the waves
from the signal are localized and the model’s parameters are
determined. The structure of the algorithm allows real-time
adaptation to the heart’s state. The compression, for better
comparison, was performed for one and more channels from the
MIT/BIH database samples. The compression ratio depends on the
maximal allowed root mean square reconstruction error (RMSRE).
As a second classification criterion we applied the performance of
the signal detection method from the compacted data. We used an
adaptive entropy encoder to reduce the redundancy. The major
advantage of this method is the possibility to accomplish a real-time,
adaptive and patient specific encoding with relatively low
computational power, ideal for telemetry measurements. This
research is supported by the Hungarian Foundation for Scientific
Research, Grant T29830 and FKFP0301/0999 Project.
Keywords - ECG signal analysis, QRS detection, heart model, on-line
processing, telemetry.

I. INTRODUCTION

The computerized ECG processing [1,2], after several years of
improvement, can be considered a well-developed application.
Many digital ECG analyzing systems, most of which are based
on recognition and clustering algorithms, have to recognize any
potentially dangerous arrhythmia with at most a few seconds
delay. This task has to be accomplished in case of the telemetry
systems too [3].

A distributed Holter telemetry [4] system with low bandwidth
channels needs signal compression for efficient functioning.
Beside these systems the central databanks (consisting million of
ECG recordings) also needs efficient signal compression [5].

Due to the collected noise during measurement there is almost
no reason to use loss-free compression [6,7]. We focused on
loose methods because the measurement noise and final
reconstruction possibility, using medical knowledge. Moreover,
that small recovery error seldom disturbs the accurate diagnosis
[8].

Almost all biological signals are more complex, than being
possible to represent correctly with linear models, so we used
exponential parameterization in order to determine the signal’s
main characteristics. This model type could be used at filtering,
determination and compression too.

The compression performance criterion includes two factors:
diagnosis performance from reconstructed signal and the amount
of the compacted data. According to these facts, the root mean
square reconstruction error (RMSRE) and the required terms of
bits per second  (RTBS) criteria reflect the truth in almost every
case [9].

The whole method consists of preprocessing, filtering,
evaluation, model parameter estimation, signal reconstruction
and error evaluation after post-filtering and compression [10].

Creating a heart model [11] increases the performance of
evaluation, because the computer, when applying traditional
signal processing algorithms, recognizes lots of waves, but it
does not really “understand” what is happening. This problem
can be handled only if the computer knows the origin, the
formation of the ECG signal [4].

II. MATERIALS AND METHODS

This algorithm was tested using the ECG registrations of MIT-
BIH database, sampled at 360 Hz with 11-bit resolution. The
bulk of these files contain two channels.

The following ECG compression algorithm is based on the
adaptive long and short-term prediction.

It consists of the following steps:
• Pre-filtering;
• Segmentation into R-R intervals;
• Building up template bank for R, T and P waves;
• Determine the model’s parameters;
• Performing optimal filter using pattern database and the

model-based estimation;
• Adaptive smoothing of the output data;
• Estimation and determination of the residual signal;
• Back-estimation to verify the detection rate;
• Entropy coding;

A. Pre-filtering

This step is absolutely necessary because of the necessity of
the accurate R, T and P wave detection for segmentation. Let
$ ( )X nL  and $ ( )X nR  the n-th left and right aimed estimation,
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where aL i, , aR i, , bL i,  and bR i,  are prediction coefficients, pL

and pR  are balance probabilities determined by the dispersions
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For better separation of the signal from the noise, the length l
ought to select more than one R-R period.

In real time processing the estimation is delayed with at least
3 ⋅q , but preferably with more than one R-R interval, in order to

minimize the differences of the efficiency between $ ( )X nL  and
$ ( )X nR ; ( ; )p p p pL R L R≥ + = 1 .

The result of this procedure is $ ( )X n  obtained by:
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The estimation factors aL i, , aR i, , bL i, , bR i, , ai  and bi  are

obtained by a genetic algorithm [10]. Although σ ~ ( , )X XL
n l−

and σ ~ ( , )X XR
n l−  may take various values, the calculated

probability p rarely is outside of the interval (0,4-0,65).

B. Segmentation into R-R  intervals

The data separation is performed by using some pre-
determined information, in order to build up the starting pattern
collection. Then a neural network [9,12] with a nonlinear hidden
layer detects the R waves. The major problem is to resolve the
cases when the patient’s QRS wave’s pattern differs much from
“average waveforms”. In this case a deeper analysis is necessary,
which is processed using hearth model based signal estimation.
This is an unavoidable step of the filtering and detection.

C. Construction of the R, T and P waves shape selection and
determine the heart model’s parameters

The main characteristic shapes of a normal ECG signal are R,
T and P waves. While performing real-time analysis, the wave-
bank can be slightly modified. The changes are based on auto-
correlation of the pre-filtered signal and the template’s elements.

The heart model, to verify the anatomic construction of these
signals in order to develop the model and to detect possible
hearth malfunctions must process these waves. In this step are
determined the model’s parameters, too.

D. Performing optimal filter using pattern database and the
model-based estimation

The optimal filter bases on the pre-filtered signal and the
template bank. Let
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be the processed data. The low value of the pF ( pF <0.2)

justifies the need of the collection B, whose m-th element has the
maximal correlation value with X(n). The model estimation
determines the B collection elements.

E. Adaptive smoothing of the output data

After the signal is filtered, a smoothing operation should be
performed to reduce the size of the compacted data. The
method’s strength should be selected in accordance with the
diagnosis performance decrease from the recovered signal. The
main aim of this algorithm is to decrease the length of the
compressed signal and to keep the data quality as high as
possible. Let be
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where k j Nj= ∈2 ;( ) , τ ∈N and N is the natural set.

Normally the adjacent samples are highly correlated, and we
select the positive integer τ  that minimizes the auto-correlation
function of the ECG signal. Usually the sampling delay τ  is
about half a QRS complex duration. Because the QRS complex
contains the bulk of the signal’s power, the R wave is nearly
symmetrical and in normal case Q and S are negative, it is clear,
that theτ sampling period delay is optimal. In the meantime this
value should be adaptively changed.

The inverse transform is given by:
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In the meantime of the transform, the values of 
~

( )X n  and
~ ( )[ .]X nsm  can be modified with k

2  in order to reduce the

reconstruction error or the dispersion of the smoothed signal. The
efficiency of this algorithm highly depends on the chosen values
for k  and τ .

F. Estimation and determination of the residual signal

Because the scatter of the filtered and optionally smoothed
signal σ ~

[ .]
( , )X sm
n l  is too high to allow sufficient compression

rate, a linear prediction transform is needed. This method
eliminates the redundancy due to correlation between adjacent
samples and beats.

The resulting data
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determine the residual r n Y n X nsm( ) ( ) ~ ( )[ .]= − .

G. Back-estimation to verify the detection rate

After determining the residual signal we proceed a verifying
process to determine the performance decrease due to
compression. More iterations should be calculated to determine
the optimal set of parameters. This means that, when the
performance decreases significantly, we have to look for a better
solution (a better set of parameters).
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H. Entropy coding

The estimation errors have nearly normal distribution. In order
to reduce the length of the residual data an entropy coding is
needed. In order to minimize the loss we use an own adaptive
coding method.

For every moment we determine the dispersion σ r n l( , )  and

the probability p r n l
r n lσ ( , ) ( ( , ))  of the errors. If the quantum is

q u= 2 , where u is the length in bits of the word, the output value
is obtained by:

N n k I n k p n k I n kact[ .] ( , ) ( ) ( ) ( ) ...= − + + − + ⋅ − + +1 1 21 1 2

  ... ( ) ( )+ − + ⋅
=

−

∏ p n k i I ni k
i

k

1

1
,               (8)

where ( )p n k i p r n k i li ( ) ( ),− + = − +   and

I n i p n i drk i k i

r n i

− −
−∞

−
− = − ⋅∫( ) ( )

( )
.

III. RESULTS

To allow a better performance estimation we used the MIT-
BIH arrhythmia database for evaluation. The performance is
determined by the number of estimation parameters, smoothing
strength, resolution and sampling rate.

Due to hearth model estimation and the advanced verifying
algorithm, the resulting file size is considerably decreased.

Table I. illustrates the smoothing and power’s effect on the file
MIT 105.

TABLE I.
THE SIZE OF THE COMPACTED SIGNAL FOR DIFFERENT CASES

Power Loss-free
RMSRE=0

Smoothing I.
RMSRE=3%

Smoothing II.
RMSRE=9,7%

4 185457 22567 10223
8 177876 20986 9844

16 172546 19443 9223
32 169452 19104 8997

The sampling rate has minor effect when increased above
200Hz, but a better resolution always increase the performance,
due to the better estimation and lower reconstruction errors.

TABLE II.
RESOLUTION’S EFFECT (COMPARED 8 AND 11 BIT SAMPLES)
Power Loss-free, 11 bit

Smp.=180Hz
Loss-free, 11bit
Smp.=360Hz

Loss-free, 8 bit
 Smp.=180 Hz

4 179799 175485 212995
8 173456 170872 204457

16 169553 167524 200782
32 167495 164790 197904

The entropy coding can decrease about 10 times the theoretical
“waste”, compared with Huffman coding, during signal
compacting.

TABLE III.
THE ENTROPY CODER’S PERFORMANCE FOR DIFFERENT FILES

File
(MIT-BIH)

Theoretic
Entropy

32 parameters

Huffman
code size

32 parameters

New coding

32 parameters
104 170889 202158 173238
105 167021 197384 169452
108 172093 204214 175027
201 156878 185962 159003
203 185872 218977 188409
222 168126 199880 170981
228 181774 214708 184095

These files were selected from the arrhythmia database due to
their higher noise or artifact level. For all the studied
registrations, the performance was better than Cuiwei’s QRS
detection technique [7,13].

IV. DISCUSSION

By increasing the parameter number above 32, the
performance will not increase considerably. This performance
can be boosted only using wave-shapes generated by the hearth
model. To maximize the performance in this way we need further
study.

The main goal of Table I. is to clarify, that in case of exact
coding higher resources are needless. A subsequent filtering
applied at the recovery of a smoothed signal needs a lot of
computation time, its speed is comparable with the compaction’s
one.

The resolution reduction can create significant decrease of the
condensed file (Table II.) due to the efficient filter method
(equation: 1-4). If the sampling rate is lower, the compressed
data is shorter only at loss-free coding. This fact is unambiguous,
lower quantity of information means more redundancy. Above
200Hz sampling rate the performance increase due high sampling
rate is minimal.

Fig. 1. The recognition ratio of R, T and P waves plotted against RMSRE

Table III. illustrates the compaction effectiveness for the most
perturbed files, whose noise level and missed R wave detection
rate was maximal [7]. The new coding algorithm (equation: 8)
has far better results than the adaptive Huffman coding. Gauss
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distribution reflects almost truly the real situation, its change is
not recommended without further knowledge.

The smoothing strength should be selected by k  and τ
(formula: 5,6). Experiments show that (Figure 1) R wave can be
accurately recognized even if RMSRE is about 10 %. For T and
P wave detection [7,9] the root mean square error must not
exceed 3-5 % of the signal’s power. S (J), Q points and U wave
cannot be recognized in most of the cases if RMSRE is higher
than 1 %.

V. CONCLUSION

The experimental real-time processing with this method needs
a powerful computer. In Holter telemetry [4] and diagnostic
systems, where a vast amount of data are acquired and
transmitted by radio wave, the compression is an unavoidable
step of the computerization.

Sophisticated long computation (due to the hearth model) and
lingering unpack of the signal could be the major disadvantages
of this process. Although quite often the calculation term doesn’t
admit on-line computerization (in multitasking mode), the rapid
evolution of the computers will shortly change this fact.
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